Концепции современного естествознания

Фрактальные закономерности в природе

Фрактальные закономерности в природе.

 Высказывания выдающихся ученых прошлого и современности, которые опеделяют содержание темы:
 "Прямая линия ведет человечество к упадку. Тирания прямой стала абсолютной. Прямая линия - это нечто трусливое, прочерченное по линейке, без эмоций и размышлений, это линия, не существующая в природе. И на этом насквозь прогнившем фундаменте построена наша обреченная цивилизация. Если даже и возникает где-то мысль, что прямая линия напрямик ведет к гибели, ее курсу все равно продолжают следовать дальше..." (Фриденсрайх Хундертсвассер - один из ведущих специалистов современности по фракталам)
 "Вся наука записана в этой великой книге - я имею ввиду Вселенную, которая всегда открыта для нас, но которую нельзя понять, не научившись понимать язык, на котором она написана. А написана она на языке математики, и ее буквами являются треугольники, окружности, другие геометрические фигуры, без которых человеку невозможно разобрать ни единого слова, без них он подобен блуждающему во тьме."Г. Галилей, 1623 г.).
 "Почему геометрию часто называют холодной и сухой. Одна из причин заключается в ее неспособности описать форму облака, горы, дерева или берега моря. Облака - это не сфера, горы - это не конусы, линия берега - это не окружности, и кора не является гладкой, и молния не распространяется по прямой... Природа демонстрирует нам не просто более высокую степень, а совсем другой уровень сложности. Число различных масштабов длин в структурах всегда бесконечно. Существование этих структур бросает нам вызов в виде трудной задачи изучения тех форм, которые Евклид отбросил как бесформенные, - задачи исследования морфологии аморфного. Математики однако, пренебрегли этим вызовом и предпочли все больше и больше отдаляться от природы, изобретая теории, которые не соответствуют ничему из того, что можно увидеть или почувствовать."Бенуа Мандельброт, 1984 г.).
"Там, где окружающий нас мир перестает быть ареной личных надежд и желаний, где мы как свободные существа, сомневаясь и размышляя, созерцаем его в изумлении, там мы вступаем в царство искусства и науки. Если мы описываем увиденное и известное по опыту на языке логики - это наука; если же предоставляем в формах, внутренние взаимосвязи которых недоступны нашему сознанию, но которые интуитивно воспринимаются как осмысленные, - это искусство. И для искусства, и для науки общим является увлечение чем-то стоящим выше личного, свободным от условного." (А.Эйнштейн).
 "Та предустановленная гармония, которая вновь и вновь удивляет мыслящего человека, принуждает нас к религиозному благоговению и делает возможной веру в высшего законодателя, который стоит за этим разумным бытием." (Макс Гартман, германский биолог).
 В космическом хаосе, говоря словами Гете, есть "законы, охраняющие сокровища жизни, которыми украшает себя Вселенная".
 На каждой новой ступени организации материи вступают в силу новые правила. Это не означает, что известные до сих пор законы природы неверны, но это лишь означает, что трудно обнаружить все скрытое в них. Приведем примеры. Долгосрочный прогноз солнечной системы невозможен (уравнения являются неинтегрируемыми). Невозможность осуществления до настоящего времени управляемого  термоядерного синтеза связана с тем, что нет адекватного представления о хаотическом движении заряженных частиц в системе магнитных линз. Изучение развития яиц насекомых показывает, что морфогенез невозможно понять только из знания молекулярного строения соответствующего генома.
 Нелинейные процессы приводят к ветвлению. Система может выбрать ту или иную ветвь, последствия выбора однозначно предсказать невозможно, поскольку для каждого из этих решений характерно усиление отклонений. Хотя в каждый отдельный момент причинная связь сохраняется, но после нескольких ветвлений она уже не видна. Рано или поздно начальная информация о состоянии системы становится бесполезной. В ходе эволюции генетическая информация генерируется и запоминается. Законы природы допускают множество различных исходов, но наш мир имеет одну единственную историю.
Хаос - фундаментальное понятие философии, социологии и естествознания. Оно играло существенную роль уже в мировоззрении философов древности. По их представлениям хаос - состояние материи при отсутствии всех факторов, влияющих на нее и позволяющих выявить ее свойства и структуру. При действии разных факторов из хаоса может рождаться все, что состовляет строение Мироздания, т. е. может рождаться Порядок. Роль творящей силы Платон отводил Демиургу, который превратил изначальный Хаос в Космос - Порядок. Таким образом, Хаос противопоставляется Порядку. Отсюда и представление о хаосе как о беспорядочном движении.
 В физику понятие хаоса было введено Л.Больцманом и Дж.Гиббсом. В качестве меры хаотичности движения они использовали понятие энтропии.
В странном мире хаоса и турбулентности начиная с 70-х г. XX века ученые стали находить непривычную, но вполне определенную упорядоченность, образуемую путем бесконечного (в принципе) повторения какой-либо исходной формы во все уменьшающемся масштабе по определенному алгоритму, инструкции или формуле (фрактальные закономерности). В современной науке фрактальность поведения сложных нелинейных систем считается их неотъемлемым свойством как строго доказанный математический факт. Оказывается, что если система достаточно сложна, то она в своем развитии обязательно проходит через чередующиеся этапы устойчивого и хаотического развития. Причем сценарии перехода от порядка к хаосу и обратно поддаются классификации, и вновь все многообразие природных процессов распадается на небольшое число качественно подобных.
 Один из таких сценариев может быть описан с помощью наглядного геометрического образа, рисунка, являющегося фракталом. Речь идет о так называемом логистическом отображении, впервые использованном П. Ферхюльстом в 1838 г. как модель роста числа особей в популяции животных. Согласно этой модели, общее число х(n) особей n-го поколения пропорционально числу х(n-1) особей предыдущего поколения с коэффициентом пропорциональности, линейно убывающем в зависимости от этого числа особей. Подобной динамикой обладает и изменение банковского вклада по закону сложного процента, когда начисление линейно зависит от самого вклада. Более того, оказалось, что свойства логистического отображения универсальны, они характерны для динамики любой системы, поведение которой описывается гладкой функцией вблизи ее минимума.
 Развитие систем, описываемых логистическим отображением, очень напоминает античные натурфилософские и мифологические сценарии рождения мира. Сначала, при некотором значении коэффициента пропорциональности, в системе имеется только одно устойчивое положение равновесия - Единое еще не начало свой путь творения. При изменении коэффициента наступает момент, когда точка равновесия раздваивается, возникают два устойчивых состояния, в которых система пребывает по очереди, то в одном, то в другом, шаг за шагом во времени. Потом каждая из этих точек вновь раздваивается, и ситуация повторяется, сохраняя общий рисунок. Рано или поздно множество точек равновесия плотно заполняют все множество состояний, система переходит к хаосу, полностью разрушая свою структуру. Но затем, при дальнейшем росте параметра, из хаоса вновь возникает некоторое конечное число упорядоченных состояний, которые в конце концов "схлопываются" в единственное,  и все начинается сначала. В математической  модели этого явления обнаружено множество подобных, скейлинговых элементов; эти свойства в науке носят названия универсальности Фейгенбаума. Множество Мандельброта(ММ) названо по фамилии открывшего его математика из фирмы ИБМ Бенуа Мандельброта. Как и всякий фрактал, ММ задается удивительно простым итерационным алгоритмом: z <- z 2 + c. Здесь переменная z и константа с - комплексные числа, отображаемые точками на координатной плоскости, где и формируется пространственный образ множества. Работа алгоритма состоит в последовательном вычислении сумм, причем в формулу каждый раз подставляется значение z, полученное на предыдущем шаге. Для канонического вида ММ начальная величина z=0. Ясно, что в этом случае алгоритм сводится к бесконечной формуле ...(((с 2 +с) 2 +с) 2 +с) 2 +...
 Для любого значения числа с возможен один из двух результатов вычислений. Либо сумма постоянно растет - быстрее или медленнее, но рано или поздно "улетая" в бесконечность, либо она остается конечной, сколько бы шагов ни сделал алгоритм (на практике берется не более 1000, что вполне достаточно). По мере роста числа шагов алгоритма выявляются новые и новые причудливые и стройные фрактальные структуры, неисчерпаемое богатство форм. А самое удивительное в том, что многие из них напоминают различные природные объекты: инфузории и снежинки, морские коньки и галактики, раковины и облака... как вдруг - снова возникает "черный карлик", и все начинается сначала. Вот оно, самоподобие!

 Фрактальная геометрия природы выражается в том, что принцип самоподобия в приближенном виде выполняется во многих проявлениях: в линиях берегов морей и рек, в очертаниях облаков и деревьев, в турбулентном потоке жидкости и иерархической организации живых систем (хотя нет ни одной реальной структуры, которую можно было бы последовательно увеличивать бесконечное число раз и которая выглядела бы при этом неизменной).
 Фрактальные структуры порождают процессы с обратной связью, когда одна и та же операция выполняется снова и снова, и результат одной операции является начальным значением для следующей. Динамический закон ( x n+1 = fxnc)  должен быть более сложным, чем простая пропорциональность (x n+1 = kxn ).
 Проблемы, связанные с итерациями, возникают при изучении эволюции любой системы в любой области знания, от астрономии до биологии и экологии. Таким образом, простая динамическая система может развить незначительную информацию, содержащуюся в ключе (z n+1 = z 2 n + c), и породить разнообразные высокоорганизованные структуры. Например, прочитать генетическую информацию ДНК человека в принципе возможно, не расшифровывая последовательно год за годом три миллиарда буквенных обозначений, а установив ключ, лежащий в основе кода.
 Несмотря на внешнее разнообразие встречающихся в природе самоподобных структур, все они обладают общей количественной мерой - фрактальной размерностью, характеризующей скорость увеличения элементов фрактала с увеличением интервала масштабов, на котором он рассматривается.
 Сложные биологические структуры и сигналы могут быть численно охарактеризованы всего лишь одним параметром - показателем фрактальной размерности (1993г. Будапешт. Первая международная конференция "Фракталы в естественных науках").

 Как уже отмечалось, фрактальным строением обладает огромное число объектов и процессов в окружающем нас мире. Хрестоматийный пример фрактала - крона дерева. Крона имеет ветвящуюся многомасштабную структуру с отчетливо выраженным самоподобием: ветви разных масштабов похожи между собой и на дерево в целом. Примерами фракталов являются поверхность облаков и гор, разветвленные системы рек, траектории броуновских частиц, турбулентные вихри в атмосфере и в воде, контуры электрических разрядов и многие другие объекты и явления.
 Наше ощущение прекрасного возникает под влиянием гармонии порядка и хаоса в объектах природы - тучах, деревьях, горных грядах и кристалликах снега. Их очертания - динамические процессы, застывшие в физических формах, и определенное чередование порядка и беспорядка характерно для них.
 В 1992 году вышла книга М.Маковского "Лингвистическая генетика". В ней автор доказывает, что человеческие языки развиваются по законам Менделя. "Слова-родители" дают потомство, которое имеет признаки "отца" и "матери". У многочисленных "братьев" и "сестер" родительские признаки расщепляются по закону Менделя в соотношении 3:1. Дурная наследственность порождает мутации - появляются слова уродцы. Иногда часть слова перепрыгивает с места на место - (происходит транспозиция). Лингвист Геннадий Гриневич писал, что языки мира подобны ветвям дерева, т.е. имеют общий корень. Математик-лингвист Ноам Хомский доказал, что грамматики всех языков универсальны (имеют общие стратегические черты). Эти и другие факты позволили лингвистам создать универсальную математическую модель человеческих языков, которая оказалась похожей на дерево.
 Существует математическая модель генетических текстов (кодов). Все они имеют общее происхождение и общие черты, которые можно изобразить в виде дерева. Интересно, что сравнение обнаруживает полное сходство деревьев языков и генетических текстов. Возможно, человек подобен памятной книге, в которой пишут отзывы все желающие, в том числе и он сам. Эти тексты не только формируют его личность, но и впечатываются в ДНК. 
 Говоря о микроэволюции часто пользуются широко принятой аналогией между филетической группой и деревом. Филетическое видообразование можно сравнить с ростом ветвей. Время от времени побеги дерева постригаются, лишая их дальнейшего роста, по некоторым правилам: убираются ветви расположенные на максимальной высоте, нередко отсекаются побеги одной крупной ветви, включающей в себя множество мелких ветвей и веточек.
 Дерево научного знания в аксиоматической теории М. С. Эйдельмана - эквивалент библейского дерева познания добра и зла. Корни - первичные понятия и определения, аксиомы и постулаты, ветви - теоремы вторичных законов и их следствия, плоды - непротиворечивое описание языком природы множества объектов и явлений, включая техногенные.
 Как одно из наиболее древних, интуитивно найденных средств восстановления внешней фрактальности, может рассматриваться искусство. В частности, обнаружено, что вариации силы и высоты звучания классической и народной музыки демонстрируют отчетливо самоподобие. Можно убедиться, что этим свойством обладает и масштабная структура классических архитектурных сооружений. Прослушивание музыкальных произведений, начиная со средних веков, успешно используется в качестве особого метода терапии, получившего название "музыкопея". Как отмечено автором первого исследования фрактальных свойств музыки, причина ее красоты и гармоничности может состоять в том, что музыка "имитирует характерный способ изменения окружающего нас мира во времени". В развитие этой мысли можно добавить, что критерии эстетичности в искусстве, по-видимому, обусловлены и "фракталами внутри нас", создающими потребность в адекватном режиме взаимодействия живой системы с внешней средой.

Фрактальная геометрия природы выражается в том, что принцип самоподобия в приближенном виде выполняется во многих проявлениях.Она имеет место в линиях берегов морей и рек, в очертаниях облаков и деревьев, в турбулентном потоке жидкости и иерархической организации живых систем (хотя нет ни одной реальной структуры, которую можно было бы последовательно увеличивать бесконечное число раз и которая выглядела бы при этом неизменной).

Фрактальным строением обладает огромное число объектов и процессов в окружающем нас мире. Несмотря на внешнее разнообразие встречающихся в природе самоподобных паттернов, все они обладают общей количественной мерой - фрактальной размерностью, характеризующей скорость увеличения элементов фрактала с увеличением интервала масштабов, на котором он рассматривается.(Рост и формы крон деревьев).Геометрическая модель фрактального листа папоротника. Элементы разных масштабных уровней, заключенные в рамки, и лист как целое обладают взаимоподобной топологией.

Наглядный пример фрактала - лист папоротника. Он имеет ветвящуюся многомасштабную структуру с отчетливо выраженным самоподобием: форма повторяется при увеличении масштаба, фрактальная размерность составляет примерно 1,5. Примерами фракталов являются поверхность облаков и гор, разветвленные системы рек, траектории броуновских частиц, турбулентные вихри в атмосфере и в воде, контуры электрических разрядов и многие другие объекты и явления.

 

Наше ощущение прекрасного возникает под влиянием гармонии порядка и хаоса в объектах природы - тучах, деревьях, горных грядах и кристалликах снега. Их очертания - динамические процессы, застывшие в физических формах, и определенное чередование порядка и беспорядка характерно для них.  Белый шум, вне зависимости от физической природы колебательного процесса, имеет чисто случайный характер. Спектр мощностей - прямая, параллельная оси частот, так как колебания любой частоты равновероятны.

Огромное число объектов и процессов в Природе обладает фрактальным строением.Вселенная характеризуется гармонией порядка (космос) и беспорядка (хаоса), наличием процессов их взаимного перехода.Любой нелинейный процесс развития приводит к ветвлению, система может выбрать ту или иную ветвь. Хотя в каждый отдельный момент причинная связь сохраняется, но после нескольких ветвлений она уже не видна, поэтому начальная информация о состоянии системы становится бесполезной. Законы природы допускают множество различных исходов, но наш мир имеет одну единственную историю.Понятие "фрактал" обозначает широкий класс топологических форм, главной особенностью которых является самоподобная иерархически организованная структура. Самоподобные паттерны обладают общей количественной мерой - фрактальной размерностью, которая характеризует скорость увеличения элементов фрактала с увеличением интервала масштабов, на котором он рассматривается.